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FERROELECTRIC POLARIZATION IN POLYMERS

M. G. Broadhurst and G. T. Davis

National Bureau of Standards |

Washington, D.C. 20234 i

INTRODUCTION

Previous work has shown that a model of oriented dipoles accounts quite well

for observed piezoelectric and pyroelectric behavior of amorphous' and semicrystal-

- - 5 At 4

line< polymers. The process whereby the dipoles become oriented is the subject of

this paper. Here we summarize a model and calculated results for ferroelectric

SR G, AT

reorientation of molecular dipoles in the all-trans polar crystal phase (8 phase
or Form I) of polyvinylidene fluoride. By ferroelectric we mean a material with
polar crystals where the polarization direction can be reversed with an applied
electric field.

In the model, the orientations of molecular dipoles depend on the electric
field and the history of the field application. The quantities <cose>, <cos-&>,
and f(2) can be calculated where g is the angle between a dipole and the aoplied
field, f(9) is the fraction of dipoles at angle & and the brackets <> indicate a
spacial average. The experimentai physical quantities of interest for comparison
with the model are polarization (a measure of <cose>), infra red transmission
intensity?** (a measure of <cos®8>) and x-ray pole figure data® (a measure of f(8)).
Since only one adjustable parameter is used in the model, these various comparisons
permit an unusually thorough evaluation of the strengths and weaknesses of the

model.

THE MODEL
Polyvinylidene fluoride (PVDF) is a linear molecule with a carbon backbone.

In its crystalline forms the molecule has a large moment normal to the chain,




In the 8 crystal phase the unit cell is polar and the crystals form lamellae typi-
cally 10 nm thick with the molecular segments nearly normal to the large crystal
surfaces>  The molecular segments which traverse the crystal lamellae are inter-
connected through the intercrystalline amorohous regions (See Fig. 1) either by

tight folds at the lamellar surface or by longer irregular molecular segments. As

demonstrated in the data referenced later in this paper, the segments in the crystal
can rotate as rigid rods or by a propagating twist mechanism about their chain axis,
giving a reorientation of the crystal moment. The shape of the curve relating
potential energy to angle for individual chain rotation is not known, but following
Kepler and Anderson's observation that the near-hexogonal unit cell cross section
will permit a six-fold degeneracy in the orientation of the crysta1§ we assume
equivalent potential energy minima, 60 degrees apart as shown in Fig. 2. The
potential energy of an orientation 8; relative to a base line is Ujand the

fraction of segments having that orientation is f;. We use the first order,

mean field cooperativity assumption®®’ that U; =-U,f, where U, is the energy
difference between a filled and empty site. This assumption describes the

desired feature that if most segments have a given orientation then that

orientation is the preferred one (having the lowest energy). The lattice energy
of the crystal is given by >:U1-fi = -UOZfiZ, the dipole-field interaction energy

is given by -moEZf, cosfi (where the field is assumed to be at O degrees), and the

entropy is given by -sziin fi;. We do not include dipole-dipole interactions.

The Helmholtz free energy is

(A = A) = =UEfi?- mETF; cosd; +KT If; Ln f; (1)

o)

We can minimize the free energy including the constraint that :fi = 1 by using

a Lagrange multiplier technique. That is, we solve the equations,

a(Ay - Ag)/ ofj - A a(zfy)/3f5 = 0. (2)




i

The result is a set of 6 equations
-, fi - mE cosay + kT(1 +&nfy) -1 =0 (3)

Wwe can solve the simple 2 site case analytically?® but this 6 site example must

be solved numerically as detailed elsewhere,?

RESULTS

The result of the calculation is that at E = 0 for Ug/kT >2.0118 (an unusual
type of Curie point for this model), the 6-fold-degenerate lowest energy solution
is for one site to be heavily populated and the remaining five sites tc have
lesser (but equal to each other) populations. At|d> 0, the degeneracy is re-
moved and depending on E and the angle between £ and a preferred site, a
particular distribution may become unstable and a new distribution form resulting
in a change in the magnitude and direction of the crystal moment. The assumed
mode of redistribution of orientations is somewhat arbitrary but the one giving
results closest to experiment a;sumes that once a site 1 is unstable, the prob-
ability that, of the remaining stable sites, site j will be favored is propor-
tional to exp(moE cosdj/kT). This assumption is not to be confused with the
equilibrium assumption of Kepler and Anderson® that the population of site 3
will be proportional to this termm. In our case the orientations are not at
equilibrium and are highly dependent on the initial distribution of orientations
and history of electric field application,

The numerical calculation is done by varying moE/kT in equation 3 (after
dividing by kT) by small increments, recomputing fi and if a given solution is
unstable, redistributing the fi as described above, We assumed an initial
distribution of crystals such that the crystal moments and applied field are
in the plane of the crystal lamellae and the moments are equally distributed
every 10 degrees from O to 350 degrees. From the record of f, versus E we

calculate <cos8> , <cos<9> and the fraction of reflecting crystal planes at

i o s A o A i




angle & as a function of field and history. To compare moE/kT to the applied field
we assume a molecular segment in the crystal is 10 nm long. Such a segment contains
40 repeat units of 6.9 x 1077 Cm vacuum moment each. The reaction field (in the
spherical approximation) enhances this moment by (e +2)/3~ 5/3 giving a total
segment moment of 4.6 x 107°%Cm., Thus, a 1 MV/cm field at room temperature gives
moE/kT = 11, This value is well above the range of linear dielectric response
typically encountered with molecular dipoles. We used a lattice energy of Uy/kT = 3
for our calculations which gives a critical field (for which the first crystals
switch) of about 1 MV/cm., Remembering the Uy is the energy difference between an
empty and filled site, we see that the dipole-field energy can be much greater

than the crystal energies. Reducing Uo/kT to 2.5 reduces the critical field by

half but as a function of reduced field, E/E (critical), the calculations are
insensitive to Uy/kT. For simplicity, we have ignored kinetic effects in the
calcultaions even though they are inherent in the madel., For example, thermodynamic
fluctuations will allow a crystal to switch to a new preferred orientation at fields

below the critical value and all redistributions of dipoles involve rotations which

encounter local energy barriers - a process which takes time.

COMPARISON WITH EXPERIMENT
The calculated polarization as a function of electric field through 1% cycles
is shown in Figure 3. Experimental curves obtained by cycling the field at a

constant rate of change'? are shown in Figure 4. Both the observed critical

switching field and degree of polarization (as a fraction of the total possible
polarization) are satisfactorily mimicked by the calculated curve. The quantity
MmgE/KT = 11 corresponds to € = 1 Mv/cm for 10 nm thick crystals and for these

mixed phase samples (30% a crystals, 30% 3 crvstals and 40% amorphous ohase) the

maximum polarization will be about 10 uC/cm? . To account for the reversible
permittivity of the amorphous phase we have added a relative permittivity of 15
to the model which accounts for the slope in curves of Fig. 3 upon decreasing the

field.




s s

Figure 5 is a comparison between calculated <«os-=9> for the model and the
measured hysteresis of the 512 an~! IR absorption in PVOF3. This absorption is
due to 3 phase crystal vibrations polarized parallel to the CF, dipole moment.
Random orientation of single axes rotators with the axes in the plane of the
film corresponds to <cos<8> = 0.5 and 23% transmission. Complete alignment
corresponds to <«cos<e> = 1.0 and 40% transmission and these values are used
to match the magnitudes of the ordinates. Thus the magnitudes and general positions
of the two curves are very similar,

In Figure 6 we show calculated and observed x-ray pole figure results
obtained at zero field after the material has been subjected to a polarization
treatment. The abscissa refers to the angle between the bisector of the incident
and diffracted x-ray beams and the normal to the PVDF film (or equivalently the
direction of the poling field). The results from the present calculation (dashed
curve) predict the correct magnitudes at zero and large angles and are less
satisfactory than the equilibrium calculation® (solid line) at small angles.

While the above results support a conclusion that the essential features of
the high field polarization in PVDF are described by a simple cooperative ferro-
electric model, the curvature in the experimental hysteresis curves (Figs. 4 and
5) at zero fields is an obvious feature which has not been delineated in the

present calculations.
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Figure

CAPTIONS

1. Structure of semicrystalline polyvinylidene fluoride showing lamellar
crystals with molecular segments normal to the lamellae.

2. Assumed potential energy of a single molecular segment rotating about
its chain axis as a function of angle between its dipole moment and

a direction fixed in the crystal. The fraction of all molecules in a
crystal having orientation i is given by f,.

Calculated polarization hysteresis for the 6-site model assuming 10nm
long molecuiar segments rotating about their long axis.

(%]
.

4. Experimental polarization hysteresis for a sample cycled at increasingly

higher fieldsg The maximum residual polarization (at rero field) is
about 10uC/cm=,

5. Experimental (Refarence 3) and calculated infra red transmission
hysteresis for a vibration polarized along the CF, dipole in the s
crystal phase.

o. X-ray pole figure data from Reference 5 (error bars) and calculated
results from the 6-site ferroelectric model (dashed line) and an
equilibrium distribution (solid line).
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Figure 5.

Experimental (Reference 3) and calculated infra red transmission
hysteresis for a vibrational polarized along the CF, dipole in the

8 crystal phase.
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Figure 6. X-ray pole figure data from Reference 5 (error bars) and calculated
results from the 6-site ferroelectric model (dashed lines) and an
equilibrium distribution (solid line).
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